home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Turnbull China Bikeride
/
Turnbull China Bikeride - Disc 2.iso
/
STUTTGART
/
LANG
/
SCHEME
/
GNU
/
SCM4E1
/
!Scm
/
scm
/
example
< prev
next >
Wrap
Text File
|
1992-04-15
|
3KB
|
138 lines
;From Revised^4 Report on the Algorithmic Language Scheme
;William Clinger and Jonathon Rees (Editors)
; EXAMPLE
;INTEGRATE-SYSTEM integrates the system
; y_k' = f_k(y_1, y_2, ..., y_n), k = 1, ..., n
;of differential equations with the method of Runge-Kutta.
;The parameter SYSTEM-DERIVATIVE is a function that takes a system
;state (a vector of values for the state variables y_1, ..., y_n) and
;produces a system derivative (the values y_1', ..., y_n'). The
;parameter INITIAL-STATE provides an initial system state, and H is an
;initial guess for the length of the integration step.
;The value returned by INTEGRATE-SYSTEM is an infinite stream of
;system states.
(define integrate-system
(lambda (system-derivative initial-state h)
(let ((next (runge-kutta-4 system-derivative h)))
(letrec ((states
(cons initial-state
(delay (map-streams next states)))))
states))))
;RUNGE-KUTTA-4 takes a function, F, that produces a
;system derivative from a system state. RUNGE-KUTTA-4
;produces a function that takes a system state and
;produces a new system state.
(define runge-kutta-4
(lambda (f h)
(let ((*h (scale-vector h))
(*2 (scale-vector 2))
(*1/2 (scale-vector (/ 1 2)))
(*1/6 (scale-vector (/ 1 6))))
(lambda (y)
;; Y is a system state
(let* ((k0 (*h (f y)))
(k1 (*h (f (add-vectors y (*1/2 k0)))))
(k2 (*h (f (add-vectors y (*1/2 k1)))))
(k3 (*h (f (add-vectors y k2)))))
(add-vectors y
(*1/6 (add-vectors k0
(*2 k1)
(*2 k2)
k3))))))))
(define elementwise
(lambda (f)
(lambda vectors
(generate-vector
(vector-length (car vectors))
(lambda (i)
(apply f
(map (lambda (v) (vector-ref v i))
vectors)))))))
(define generate-vector
(lambda (size proc)
(let ((ans (make-vector size)))
(letrec ((loop
(lambda (i)
(cond ((= i size) ans)
(else
(vector-set! ans i (proc i))
(loop (+ i 1)))))))
(loop 0)))))
(define add-vectors (elementwise +))
(define scale-vector
(lambda (s)
(elementwise (lambda (x) (* x s)))))
;MAP-STREAMS is analogous to MAP: it applies its first
;argument (a procedure) to all the elements of its second argument (a
;stream).
(define map-streams
(lambda (f s)
(cons (f (head s))
(delay (map-streams f (tail s))))))
;Infinite streams are implemented as pairs whose car holds the first
;element of the stream and whose cdr holds a promise to deliver the rest
;of the stream.
(define head car)
(define tail
(lambda (stream) (force (cdr stream))))
;The following illustrates the use of INTEGRATE-SYSTEM in
;integrating the system
;
; dvC vC
; C --- = -i - --
; dt L R
;
; diL
; L --- = v
; dt C
;
;which models a damped oscillator.
(define damped-oscillator
(lambda (R L C)
(lambda (state)
(let ((Vc (vector-ref state 0))
(Il (vector-ref state 1)))
(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))
(/ Vc L))))))
(define the-states
(integrate-system
(damped-oscillator 10000 1000 .001)
'#(1 0)
.01))
(do ((i 10 (- i 1))
(s the-states (tail s)))
((zero? i) (newline))
(newline)
(write (head s)))
; #(1 0)
; #(0.99895054 9.994835e-6)
; #(0.99780226 1.9978681e-5)
; #(0.9965554 2.9950552e-5)
; #(0.9952102 3.990946e-5)
; #(0.99376684 4.985443e-5)
; #(0.99222565 5.9784474e-5)
; #(0.9905868 6.969862e-5)
; #(0.9888506 7.9595884e-5)
; #(0.9870173 8.94753e-5)